The New Rivers of the West

Are canals similar to rivers and streams in a semi-arid, agricultural landscape?

Erick A Carlson – Colorado State University

INTRODUCTION

The Result: Degraded Natural Aquatic & Riparian Habitats

- No surprise in the effects of "dewatering"
 - Increased temperature, shift in flow regime
 - Changes in sediment supply and disturbance
 - Invasive species (plant, animal)

Perennial

Intermittent

Ephemeral

INTRODUCTION

The Result: Novel Aquatic & Riparian Habitats

The Result: Novel Aquatic & Riparian Habitats

- Same components as rivers and riparian areas
 - Water, plants, sediment, disturbance, insects, birds
- But some key differences
 - Orientation, shape
 - Complete <u>flow</u> control
 - Disturbance type
 - Vegetation
 - <u>Aquatic macro-invertebrates</u>

OBJECTIVES

Major Questions

- Are ditches similar to streams?
 - For the plants?
 - For the aquatic invertebrates?
 - For the growing season flow patterns?
- Is there a regional component?
- Are there geomorphic components?

Lets play a game

Canal? or Stream?

Canal: Rolland Moore Park, Fort Collins

Stream: Lone Tree Creek, Greeley

Canal: Teds Place, Bellvue

Willow Creek, Weld County

New Mercer Canal, Fort Collins

Larimer #2 Canal, Fort Collins

Law Slough (canal), Severance

Log Canyon Creek, Larimer County

Pleasant Valley & Lake Canal

A Lateral Ditch, Weld County

Ē1

Pleasant Valley & Lake Canal

Spring Creek, Fort Collins

6

10

C

Take away

- Streams, rivers, canals and ditches can look
 SIMILAR or DIFFERENT
- Do two channels that look a certain way have biological communities to match?

Categorization & Mapping

- <u>Step 1</u>: Map dominant cover
- <u>Step 2</u>: Points along network proportional to cover ratio

STUDY REGION

Study Site Locations

STUDY REGION

Landuse within 100m of sites

West

East

DESIGN & DATA

Field Site Design

Surveyed 4,477 plots

METHODS

Data Collection- Benthos

- Kick Net Sampling
 - Use feet to disturb substrate upstream of net
 - Sweep net under vegetation hanging into water

METHODS

Data Collection- Vegetation

• Identify all species present

METHODS

Data Collection - Hydrology

- Data mining USGS, CDSS, City of Fort Collins
- Mean daily flow from 1999-2015 (most channels)
- Caveat! Records are from the point of diversion, not at site
- April 1 September 30

RESULTS-Hydrology

Hydrologic Metrics

METRIC	Poudre at FoCo	Poudre @ Greeley	Spring Creek@ Taft	Lone Tree Creek	Dry Creek@ Shields	Box Elder@ CR56	Larimer & Weld	Pleasant Valley&Lake	New Mercer	New Mercer @ Rolland	Larimer #2
DA / Service Area (km²)											
Years in record	17	17	3	7	3	3	17	14	17	3	17
Daily Skew	2.19	3.22	4.53	5.63	1.50	4.46	1.03	-0.56	0.99	1.52	2.03
Daily CV	2.1	1.19	0.47	1.89	0.19	1.02	1.73	0.4	1.2	1.06	1.73
Daily Mean	293.5	237.8	15.6	11.4	1.8	12.9	150.8	26.6	14.0	22.6	16.8
TqDailyMean (days)	40	29	70	47	107	60	72	107	67	34	44
Median	94.9	82.7	14.2	6.0	1.8	6.6	108.3	30.0	8.8	13.2	7.0
Daily Max	2289.4	1699.0	54.1	139.1	3.4	79.8	588.1	49.8	56.9	88.3	105.1
Daily Min	4.90	19.94	1.92	1.09	1.33	1.26	0.90	0.46	0.00	0.49	0.00
Duration (max 183 days)	183	182	183	163	183	183	170	168	146	168	125
Zero Count	0	0	0	16	0	0	9	14	37	15	58
90% Flow (Days above)	865.4 (16)	677.3 (16)	22.23 (64)	26.92 (21)	2.32 (24)	28.62 (28)	389.68 (17)	42.29 (17)	35.91 (17)	61.35 (19)	62.17 (42)
75% Flow (Days above)	406.6 (29)	279.1 (27)	17.22 (68)	13.35 (38)	1.98 (82)	22.14 (41)	246.8 (47)	37.64 (51)	22.67 (48)	28.73 (31)	16.58 (44)
25% Flow (Days below)	39.6 (55)	51.1 (70)	11.89 (105)	3.04 (80)	1.60 (52)	4.42 (101)	16.9 (37)	15.6 (45)	2.6 (51)	6.78 (44)	0.61 (70)
10% Flow (Days below)	18.4 (31)	40.9 (47)	10.62 (101)	1.85 (64)	1.49 (47)	2.03 (97)	8.07 (28)	3.1 (27)	0.05 (40)	2.08 (23)	0.19 (64)
Low Flow Stress Events											
Julian Date of max	161 (0.18)	179 (0.25)	186(0.28)	177 (0.24)	148 (0.63)	211 (0.23)	193 (0.15)	213 (0.07)	142 (0.22)	147 (0.00)	215 (0.16)
Flashiness	0.23	0.18	0.64	0.71	0.22	0.29	0.24	0.06	0.10	0.16	0.17
# of Fall Events (duration)	38 (-2.49)	33 (-2.85)	41 (-2.41)	31 (-1.93)	47 (-1.86)	32 (-2.35)	35 (-2.42)	29 (-2.02)	27 (-3.28)	37 (-2.20)	15 (-3.36)
# of Rise Events (duration)	38 (2.28)	35 (2.31)	41 (1.67)	34 (2.33)	48 (1.68)	41 (1.99)	32 (2.27)	28 (1.86)	27 (2.05)	37 (1.73)	15 (2.16)
# of signal day events	24	14	40	29	53	32	23	25	13	35	9

RESULTS-Hydrology

Cache la Poudre-@ Fort Collins

RESULTS-Hydrology

New Mercer – West Ditch

Time for Aquatic Macroinvertebrates

Diversity/Dominance

207 collection representing 40 sites over 3 years

- Most diverse 1 canal site and 1 river site > 23 taxa
- Most common 2 midges, 1 mayfly, 2 crustaceans
- All 6 major insect orders represented
- 48 observed once

Ephemeroptera, Plecoptera, Trichoptera **WEST EAST Rivers Species Richness** EPT taxa **Streams** Other insect taxa Canals

Ρ

Using 2014/2015 data

Ditches and Streams are different Ditches and Streams are different WITHIN a region Ditches different <u>BETWEEN</u> regions Streams different <u>BETWEEN</u> regions

Time for Plants

Diversity/Dominance

- 249 species (58% native)
- Bromus inermis at 49 of 54 sites, in top 3 for all surfaces
- 78 species only at 1 site

RESULTS-Vegetation

Plant Origins

Community Composition

Average cover for plots on each geomorphic surface

Community Composition

Average cover for plots on each geomorphic surface

Bank Surface

Bank Surface

Using PERMANOVA F-test

West **Ditches NOT DIFFERENT** from West Streams

East **Ditches NOT DIFFERENT** from East **Streams**

East **Ditches different** from West **Ditches**

Top/Floodplain Surface

Top/Floodplain Surface

West **Ditches NOT DIFFERENT** from West **Streams** (barely, F=1.3, p=0.079) East **Ditches NOT DIFFERENT** from East **Streams** (barely, F=1.29, p=0.072)

East **Ditches different** from West **Ditches**

Using PERMANOVA F-test

OBJECTIVES

Major Questions

- Are ditches similar to streams?
 - For the plants?
 - For the aquatic invertebrates?
- Is there a regional component?
- Are there geomorphic components?

Application – Habitat Suitability

- Use the average and range of values of habitat attributes
 - (%grass, # berry producing plants, # strata)
 - (%tall canopy, %bare sediment)
- Query attributes specific to wildlife or plants

Application Example – Leaping Mouse

- Riparian Habitat
 - Prefers mix of grasses, forbs and shrubs
 - Does not care about native
 - Dislikes bare areas (too many snakes)

Application Example – Base Map

Application Example – Selection

Select By Attributes			, iz i izi izi izi 1 -	Editor •	F PALZ	1 Lat *			<u> </u>		
Laver: SeptCollins Canals											
Only show selectable layers in this list		Ta	able								
		°.] • 🔁 • 🖳	N 🖓 🖸 🖓	ĸ						
Method: Create a new selection											
"Native"		Fo	FortCollins_Canals X								
"Grass"		L	Veg_Clas_1	Uniq_ID_1	cover_weig	Native	Grass	Forb	Shrub	Tree	•
"Forb"			Shrub	69	3.56	43.3	22.3	1.39	17.99	3.72	
"Shaib"		L	Dense Canopy	70	3.68	58.65	47.25	16.72	22.9	34.8	
"Tree"		L	Herb	71	2.97	59.77	56.43	14.21	3.71	0.22	
		1L	Dense Canopy	72	2.46	39.04	20.25	8.27	13.64	61.35	
= <> like		L	Shrub	73	3.05	61.43	46.77	18.98	18.6	36.62	
		L	Herb	74	1.26	33.81	83.96	3.38	2.88	6.81	
> >= And		II-	Shrub	75	3.43	40.35	32.86	0.29	5.53	7.49	
			Dense Canopy	76	2.26	73.59	39.33	10.92	31.53	46.24	
	= Or	Ŀ	Open Canopy	77	1.17	22.5	77.55	6.98	1.33	33.72	
_% () Not			Dense Canopy	78	3.07	33.47	27.74	12	8.4	40.41	
			Shrub	79	2.18	46.27	38.02	43.61	27.68	34.04	
Is Get Unique Values Go To:		Ŀ	Dense Canopy	80	2.18	27.33	41.99	16.62	23.61	51.61	
		Ŀ	Shrub	81	2.97	54.88	35.95	38.92	7.82	29.89	
SELECT * FROM Export_Output_2 WHERE:		Ŀ	Dense Canopy	82	3.93	46.45	43.29	14.77	21.83	53.67	
"Grass" >15	AND "Shrub" >15 AND "Forb">15 AND "Bare" <15	Ŀ	Shrub	83	3.13	48.6	45.87	5.57	21.78	22.3	
		Ŀ	Dense Canopy	84	2.13	64.69	22.36	11.9	31.66	62.18	Ψ.
									111		•
	*		H I 1	. ► ►I 📃	🔲 (24 out of	261 Select	ed)				
Clear Verify Help Load Save			ortCollins_Canals	;							
	OK Apply Close	L									

Application Example – Suitable Areas

Regional Application – Water Planning

- Categorize Ecological Value
 - Specific species, general habitat type and quality
- Risk analysis of changing water usage

Regional Application – Water Planning

- Categorize Ecological Value
 - Specific species, general habitat type and quality
- Risk analysis of changing water usage

Easy Questions Please

Thanks to : Cooper, Kondratieff, Waskom & Merritt
NSF, CWI,
Irrigation Companies: New Mercer, Larimer #2, Pleasant Valley and
Lake, Larimer and Weld